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ABSTRACT
In this work, we present the first non-linear, non-Gaussian full Bayesian large-scale struc-
ture analysis of the cosmic density field conducted so far. The density inference is based
on the Sloan Digital Sky Survey (SDSS) Data Release 7, which covers the northern galac-
tic cap. We employ a novel Bayesian sampling algorithm, which enables us to explore the
extremely high dimensional non-Gaussian, non-linear lognormal Poissonian posterior of the
three-dimensional density field conditional on the data. These techniques are efficiently imple-
mented in the Hamiltonian Density Estimation and Sampling (HADES) computer algorithm and
permit the precise recovery of poorly sampled objects and non-linear density fields. The non-
linear density inference is performed on a 750-Mpc cube with roughly 3-Mpc grid resolution,
while accounting for systematic effects, introduced by survey geometry and selection function
of the SDSS, and the correct treatment of a Poissonian shot noise contribution. Our high-
resolution results represent remarkably well the cosmic web structure of the cosmic density
field. Filaments, voids and clusters are clearly visible. Further, we also conduct a dynamical
web classification and estimate the web-type posterior distribution conditional on the SDSS
data.

Key words: methods: data analysis – methods: numerical – cosmology: observations – large-
scale structure of Universe.

1 I N T RO D U C T I O N

Observations of the large-scale structure have always attracted enor-
mous interest, since they contain a wealth of information on the
origin and evolution of our Universe. The details of structure for-
mation are very complicated and involve many different physical
disciplines ranging from quantum field theory, general relativity or
modified gravity to the dynamics of collisionless matter and the
behaviour of the baryonic sector. Throughout cosmic history, the
interplay of these different physical phenomena has therefore left
its imprints in the matter distribution surrounding us. Probes of the
large-scale structure, such as large galaxy surveys, hence enable us
to test current physical and cosmological theories and will generally
further our understanding of the Universe.

Especially a cosmographical description of the matter distribu-
tion will permit us to study details of structure formation mech-
anisms and the clustering behaviour of galaxies as well as it
will provide information on the initial fluctuations and large-
scale cosmic flows. For this reason, several different methods
to recover the three-dimensional density or velocity field from
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galaxy observations have been developed and applied to existing
galaxy surveys (Ebeling & Wiedenmann 1993; Hoffman 1994;
Lahav 1994; Lahav et al. 1994; Fisher et al. 1995; Zaninetti 1995;
Zaroubi et al. 1995; Webster, Lahav & Fisher 1997; Zaroubi,
Hoffman & Dekel 1999; van de Weygaert & Schaap 2001; Erdoğdu
et al. 2006, 2004; Kitaura, Jasche & Metcalf 2010). In particular,
recently Kitaura et al. (2009) presented a high-resolution three-
dimensional Wiener reconstruction of the Sloan Digital Sky Survey
(SDSS) Data Release 6 data, which demonstrated the feasibility of
high precision density field inference from galaxy redshift surveys.
These three-dimensional density maps are interesting for a variety
of different scientific applications, such as studying the dependence
of galaxy properties on their cosmic environment, increasing the
detectability of the integrated Sachs–Wolfe effect in the cosmic
microwave background or performing constrained simulations (see
e.g. Bistolas & Hoffman 1998; Klypin et al. 2003; Frommert, Enßlin
& Kitaura 2008; Lee & Lee 2008; Lee & Li 2008; Libeskind et al.
2010; Martinez-Vaquero et al. 2009).

However, modern precision cosmology demands an increasing
control of observational systematic and statistical uncertainties and
the means to propagate them to any finally inferred quantity in order
not to draw wrong conclusion on the theoretical model to be tested.
For this reason, here we present the first application of the new
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Bayesian large-scale structure inference computer algorithm Hamil-
tonian Density Estimation and Sampling (HADES) to data (see Jasche
& Kitaura 2010, for a description of the algorithm). HADES performs
a full scale non-linear, non-Gaussian Markov chain Monte Carlo
analysis by drawing samples from the lognormal Poissonian poste-
rior of the three-dimensional density field conditional on the data.
This extremely high dimensional posterior distribution, consisting
of ∼106 or more free parameters, is explored via a numerically ef-
ficient Hamiltonian sampling scheme which suppresses the random
walk behaviour of conventional Metropolis Hastings algorithms by
following persistent trajectories through the parameter space (Du-
ane et al. 1987; Neal 1993, 1996). The advantages of this method are
manyfold. Beside correcting observational systematics introduced
by survey geometry and selection effects, the exact treatment of the
non-Gaussian behaviour and structure of the Poissonian shot noise
contribution of discrete galaxy distributions permits very accurate
recovery of poorly sampled objects, such as voids and filaments. In
addition, the lognormal prior has been demonstrated to be an ade-
quate statistical description for the present density field and hence
enables us to infer the cosmic density field deep into the non-linear
regime (see e.g. Hubble 1934; Peebles 1980; Coles & Jones 1991;
Gaztanaga & Yokoyama 1993; Kayo, Taruya & Suto 2001). The im-
portant thing to remark about HADES is that it does not only yield a
single estimate, such as a mean, mode or variance, in fact it provides
a sampled representation of the full non-Gaussian density posterior.
This posterior encodes the full non-linear and non-Gaussian obser-
vational uncertainties, which can easily be propagated to any finally
inferred quantity.

The application of HADES to SDSS data is the first non-linear, non-
Gaussian full Bayesian large-scale structure analysis conducted so
far (SDSS; York et al. 2000). In particular, we applied our method to
the recent SDSS Data Release 7 (DR7) (Abazajian et al. 2009) and
produced about 3 terabyte (TB) of valuable scientific information
in the form of 40 000 high-resolution non-linear density samples.
The density inference is conducted on an equidistant cubic grid
with a side length of 750 Mpc consisting of 2563 volume elements.
The recovered density field clearly reveals the cosmic web struc-
ture, consisting of voids, filaments and clusters, of the large-scale
structure surrounding us.

These results provide the basis for forthcoming investigations
on the clustering behaviour of galaxies in relation to their large-
scale environment. Such analyses yield valuable information about
the formation and evolution of galaxies. For example, it has been
known since long that physical properties such as morphological
type, colour, luminosity, spin parameter, star formation rate, con-
centration parameter, etc., are functions of the cosmic environment
(see e.g. Dressler 1980; Postman & Geller 1984; Whitmore, Gilmore
& Jones 1993; Lewis et al. 2002; Gómez et al. 2003; Goto et al.
2003; Blanton et al. 2005; Kuehn & Ryden 2005; Rojas et al. 2005;
Bernardi et al. 2006; Choi, Park & Vogeley 2007; Park et al. 2007;
Lee & Lee 2008; Lee & Li 2008).

In this work, we conduct a preliminary examination of the de-
pendence of stellar mass M� and g − r colour of galaxies on their
large-scale environment. However, more thorough investigations
will be presented in following works. Analysing galaxy properties
in the large-scale environment also requires the classification of the
large-scale structure into different cosmic web types. We do so by
following the dynamic cosmic web-type classification procedure
proposed by Hahn et al. (2007) with the extension proposed by
Forero-Romero et al. (2009). The application of this procedure to
our results yields the cosmic-web-type posterior, which provides
the probability of finding a certain web type (void, sheet, filament,

halo) at a given position in the volume conditional on the SDSS data.
This permits simple propagation of all observational uncertainties
to the final analysis of galaxy properties.

This paper is structured as follows. We start by a brief review of
the methodology in Section 2, particularly describing the lognormal
Poissonian posterior and the Bayesian computer algorithm HADES.
Additionally, here we describe the dynamic web classification pro-
cedure as mentioned above. In Section 3, we give a description of
the SDSS DR7 data and present necessary data preparation steps re-
quired to apply the analysis procedure. Specifically, we describe the
preparation of the linear observation response operator and the cre-
ation of the three-dimensional data cube. In Section 4, we present
the results obtained from the non-linear, non-Gaussian sampling
procedure. We start by analysing the convergence behaviour of the
Markov chain via a Gelman & Rubin diagnostic, followed by a dis-
cussion of the properties of individual Hamiltonian samples. Here
we also provide estimates for the ensemble mean density field and
corresponding variance. These fields depict remarkably well the
properties of the cosmic web consisting of voids, filaments and
haloes. Based on these results, we perform a simple cosmic web
classification in Section 5. In Section 6, we present a preliminary
examination on the correlation between the large-scale environment
of galaxies and their physical properties. In particular, here we study
the stellar mass and g − r colour of galaxies in relation to the density
contrast δ. We conclude the paper in Section 7 by summarizing and
discussing the results.

2 ME T H O D O L O G Y

In this section, we give a brief review of the methods used for the
large-scale structure inference. In particular, we discuss the lognor-
mal Poissonian posterior and the according data model. Further, we
give a description of the HADES algorithm and a dynamic cosmic
web classification procedure.

2.1 Lognormal Poissonian posterior

Precision inference of the large-scale structure in the mildly and
strongly non-linear regime requires detailed treatment of the non-
Gaussian behaviour of the large-scale structure posterior. Although
the exact probability distribution for the density field in these
regimes is not known, however it has been already suggested for a
long time that the fully evolved non-linear matter field can be well
described by lognormal statistics (see e.g. Hubble 1934; Peebles
1980; Coles & Jones 1991; Gaztanaga & Yokoyama 1993; Kayo
et al. 2001). This phenomenological guess has been justified by the
theoretical considerations of Coles & Jones (1991). They argue that
assuming Gaussian initial conditions in the density and velocity dis-
tributions will lead to a lognormally distributed density field. It is
a direct consequence of the continuity equation or the conservation
of mass. In addition, the validity of the lognormal distribution as a
description of the statistical properties of non-linear density fields
has been evaluated in Kayo et al. (2001). In this work, they studied
the probability distribution of cosmological non-linear density fluc-
tuations from N-body simulations with Gaussian initial conditions.
They found that the lognormal distribution accurately describes the
non-linear density field even up to values of the density contrast
of δ ∼ 100. In addition, recently, Kitaura et al. (2009) analysed
the statistical properties of the SDSS DR6 Wiener-reconstructed
density field and confirmed a lognormal behaviour.

For all these reasons, we believe that the statistical behaviour of
the non-linear density field can be well described by a multivariate
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lognormal distribution, as given by
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where si is the density signal at the three-dimensional Cartesian
position xi, Q is the covariance matrix of the lognormal distribution
and μi describes a constant mean field given by
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This probability distribution seems to be an adequate prior choice
for reconstructing the present density field.

Studying the actual matter distribution of the Universe requires
us to draw inference from some observable tracer particle, such as a
set of observed galaxies. Assuming galaxies to be discrete particles,
their distribution can be described as a specific realization drawn
from an inhomogeneous Poisson process (see e.g. Layzer 1956;
Peebles 1980; Martı́nez & Saar 2002). The according probability
distribution is given as
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where Ng
k is the observed galaxy number at position xk in the sky

and λk is the expected number of galaxies at this position. The mean
galaxy number is related to the signal sk via

λk = RkN̄(1 + B(s)k) , (4)

where Rk is a linear response operator, incorporating survey ge-
ometries and selection effects; N̄ is the mean number of galaxies
in the volume and B(x)k is a non-linear, non-local, bias operator at
position xk. The lognormal prior given in equation (1) together with
the Poissonian likelihood given in equation (3) yields the lognormal
Poissonian posterior, for the density contrast sk given some galaxy
observations Ng
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It is important to note that this is a highly non-Gaussian distribu-
tion, and non-linear reconstruction methods are required in order
to perform accurate matter field reconstructions in the non-linear
regime. For example, estimating the maximum a posteriori values
from the lognormal Poissonian distribution involves the solution of
implicit equations. Several attempts to use a lognormal Poissonian
posterior for density inference have been presented in the literature.
These attempts date back to Sheth (1995) who proposed to use a
variable transformation in order to derive a generalized Wiener filter
for the lognormal distribution. This approach, however, yielded a
very complex form for the noise covariance matrix making appli-
cations to real data sets impractical. The first successful application
of the lognormal Poissonian distribution for density inference was
presented by Saunders et al. (2000). Their method is based on
the expansion of the density logarithm into spherical harmonics
(Saunders & Ballinger 2000). More accurate schemes based on
maximum and mean posteriori principles were derived by Enßlin,
Frommert & Kitaura (2009). Recently, an implementation of the
maximum a posteriori scheme was presented and thoroughly tested

by Kitaura et al. (2010). They found that, assuming a linear bias,
the lognormal Poissonian posterior permits recovery of the density
field deep in the non-linear regime up to values δ ≥ 1000 of the
density contrast. Finally, Jasche & Kitaura (2010) developed the
Hamiltonian density estimation and sampling scheme to map out
the posterior probability distribution.

2.2 HADES

As already described above, the Bayesian non-linear large-scale
structure inference requires sampling from non-Gaussian posterior
distributions. In order to do so, we developed HADES (see Jasche et al.
2010, for more details). HADES explores the very high dimensional
parameter space of the three-dimensional density field via a Hamil-
tonian Monte Carlo (HMC) sampling scheme. Unlike conventional
Metropolis Hastings algorithms, which move through the parameter
space by a random walk and therefore require a prohibitive number
of steps to explore high dimensional spaces, the HMC sampler sup-
presses random walk behaviour by introducing a persistent motion
of the Markov chain through the parameter space (Duane et al. 1987;
Neal 1993, 1996). In this fashion, the HMC sampler maintains a
reasonable efficiency even for high dimensional problems (Hanson
2001). Since it is a fully Bayesian method, the scientific output
is not a single estimate but a sampled representation of the mul-
tidimensional lognormal Poissonian posterior distribution given in
equation (5). Given this representation of the posterior any desired
statistical summary, such as mean, mode or variances, can easily be
calculated. Further, any uncertainty can seamlessly be propagated
to the finally estimated quantities, by simply applying the accord-
ing estimation procedure to all Hamiltonian samples. For a detailed
description of the theory behind the large-scale structure sampler
and its numerical implementation, see Jasche et al. (2010).

2.3 Classification of the cosmic web

The results generated by the Hamiltonian sampler HADES will per-
mit a variety of scientific analyses of the large-scale structure in the
observed Universe. An interesting example is to classify the cosmic
web, in particular identifying different types of structures in the den-
sity field. Such an analysis, for example, is valuable for studying the
environmental dependence of galaxy formation and evolution (see
e.g. Lee & Lee 2008; Lee & Li 2008). Since the structure classifi-
cation is not always unique, we provide the full Bayesian posterior
distribution of the structure type at a given position conditional on
the observations.

However, to do so we first need a means to identify different
structure types from the density field. Numerous methods for struc-
ture analysis have been presented in the literature (see e.g. Lemson
& Kauffmann 1999; Colberg et al. 2005, 2008; Novikov, Colombi
& Doré 2006; Aragón-Calvo et al. 2007; Hahn et al. 2007; Forero-
Romero et al. 2009). In principle, all of these methods can be
applied for the analysis of the Hamiltonian samples; however, for
the purpose of this paper, we follow the dynamical cosmic web
classification procedure proposed by Hahn et al. (2007). They pro-
pose to classify the large-scale structure environment into four web
types (voids, sheets, filaments and haloes) based on a local-stability
criterion for the orbits of test particles. The basic idea of this dy-
namical classification approach is that the eigenvalues of the defor-
mation tensor characterize the geometrical properties of each point
in space. The deformation tensor Tij is given by the Hessian of the
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Table 1. Rules for the dynamic classification of web
types.

Structure type Rule

Void λ1, λ2, λ3 < λth

Sheet λ1 > λth and λ2, λ3 < λth

Filament λ1, λ2 > λth and λ3 < λth

Halo λ1, λ2, λ3 > λth

gravitational potential �:

Tij = ∂2�

∂xi ∂xj

, (6)

with � being the rescaled gravitational potential given as (see
Forero-Romero et al. 2009)

∇2� = δ . (7)

It is important to note that the deformation tensor and the rescaled
gravitational potential are both physical quantities, and hence their
calculation requires the availability of a full physical density field in
contrast to a smoothed mean reconstruction of the density field. As
was already mentioned above, and will be clarified in Section 4.2,
the Hamiltonian samples provide such required full physical density
fields. The deformation tensor can therefore be easily calculated for
each Hamiltonian sample from the Fourier space representation of
equation (6). Each spatial point can then be classified as a specific
web type by considering the three eigenvalues, λ1 ≥ λ2 ≥ λ3, of the
deformation tensor. Namely, a void point corresponds to no positive
eigenvalue, a sheet to one, a filament to two and a halo to three pos-
itive eigenvalues (Forero-Romero et al. 2009). The interpretation of
this rule is straightforward, as the sign of a given eigenvalue at a
given position defines whether the gravitational force at the direc-
tion of the principal direction of the corresponding eigenvector is
contracting (positive eigenvalues) or expanding (negative eigenval-
ues). However, Forero-Romero et al. (2009) found that rather than
using a threshold value λth of zero, different positive values can
yield better web classifications. For this reason, in this work, we
use the extended classification procedure as proposed by Forero-
Romero et al. (2009). The structures are then classified according
to the rules given in Table 1. By applying this classification proce-
dure to all Hamiltonian samples, we are able to estimate the web-
type posterior P({Ti(xk)}|{N g

k }, λth) of four different web types
[T1(xk) = void, T2(xk) = sheet, T3(xk) = filament, T4(xk) =
halo] conditional on the observations and the threshold criterion
λth.

3 DATA

In this section, we describe the SDSS galaxy sample used for the
analysis. Additionally, we discuss the data preparation steps re-
quired to perform the three-dimensional density inference proce-
dure.

3.1 The SDSS galaxy sample

We use data from sample DR72 of the New York University Value
Added Catalogue (NYU-VAGC).1 This is an update of the cata-
logue constructed by Blanton et al. (2005) and is based on the

1 http://sdss.physics.nyu.edu/vagc/

final data release DR7 (Abazajian et al. 2009) of the SDSS (York
et al. 2000). Starting from sample DR72, we construct a magnitude-
limited sample of galaxies with spectroscopically measured red-
shifts in the range 0.001 < z < 0.4, r-band Petrosian apparent mag-
nitude r ≤ 17.6 after correction for Galactic extinction and r-band
absolute magnitude −23 < M0.1r < −17. Here M0.1r is corrected
to its z = 0.1 value using the K-correction code of Blanton et al.
(2003b) and Blanton & Roweis (2007) and the luminosity evolution
model of Blanton et al. (2003a). The apparent magnitude limit is
chosen in order to get a sample that is uniform and complete over
the entire area of the survey. We also restrict ourselves to galaxies
located in the main contiguous area of the survey in the northern
Galactic cap, excluding the three survey strips in the southern cap
(about 10 per cent of the full survey area). In addition, we consider
only galaxies which are inside a comoving cube of a side length
of 750 Mpc. These restrictions result in a final sample of 463 230
galaxies.

The NYU-VAGC also provides the necessary information to cor-
rect for incompleteness in our spectroscopic sample. This includes
two parts: a mask which shows which areas of the sky have been
targeted and which have not, and a radial selection function which
gives the fraction of galaxies in the absolute magnitude range be-
ing considered that are within the apparent magnitude range of the
sample at a given redshift. The mask defines the effective area of the
survey on the sky, which is 6437 deg2 for the sample we use here.
This survey area is divided into a large number of smaller subareas,
called polygons, for each of which the NYU-VAGC lists a spec-
troscopic completeness, defined as the fraction of photometrically
identified target galaxies in the polygon for which usable spectra
were obtained. Over our sample, the average completeness is 0.92.

3.2 Completeness and selection function

Three-dimensional density field inference requires the definition of
the linear observation response operator Rk, as given in Section 2.1.
This response operator describes to what percentage each volume
element of the three-dimensional domain has been observed. It is
hence a projection of the product of radial and angular selection
function into the three-dimensional voxelized space. In particular,
we have to solve the convolution integral:

Rk = R(xk) =
∫

d y W (xk − y) f (r( y)) M (α( y), δ( y)) , (8)

where W(x) is the voxel kernel, f (r) is the radial selection function,
with r being the distance from the observer, and M(α, δ) is the
angular selection function, where α and δ are right ascension and
declination, respectively. We evaluate this integral numerically for
the nearest grid point kernel by following different lines of sight
and calculating the contribution of the product of angular and radial
selection function to each voxel.

As mentioned above, in this work we used the two-dimensional
sky mask and the radial selection function provided by the NYU-
VAGC.

3.3 Creating the three-dimensional data cube

The large-scale structure sampler operates on a three-dimensional
equidistant grid. In particular, in this work we set up a cubic grid
with a side length of 750 Mpc and 2563 voxels. This amounts to a
resolution of ∼3−Mpc voxel side length. Since our algorithm relies
on the correlation function in comoving space, all calculations are
performed with comoving length units rather than with redshift
distances. For this reason, we transform all galaxy redshifts z to
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comoving distances via the relation

r =
∫ zi

0
dz

1

c H (z)
, (9)

where zi is the estimated galaxy redshift, c is the speed of light and
H(z) is the Hubble parameter given as

H (z) = H0

√
�m (1 + z)3 + �c (1 + z)2 + �	 . (10)

Further, we choose a concordance 	 cold dark matter (	CDM)
model with a set of cosmological parameters (�m = 0.24, �c =
0.00, �	 = 0.76, h = 0.73, H0 = h 100 km s−1 Mpc−1; Spergel
et al. 2007,). With these definitions, we can calculate the three-
dimensional Cartesian coordinates for each galaxy as

x = r cos(δ) cos(α)

y = r cos(δ) sin(α)

z = r sin(δ),
(11)

where α and δ are the right ascension and declination, respectively.
We then sort the galaxy distribution into the three-dimensional
equidistant grid via a nearest grid point procedure (see e.g.
Hockney & Eastwood 1988). An estimate for the expected num-
ber of galaxies N̄ can then be calculated as

N̄ =
∑

k N
g
k∑

l Rl

(12)

(see e.g. Kitaura et al. 2009; Jasche et al. 2010, for details).

3.4 Physical model

Observations of the galaxy redshifts do not permit direct inference
of the underlying matter distribution. Various physical effects such
as galaxy biasing and redshift-space distortions must be taken into
account for proper analyses. This is of particular relevance for the
choice of a power spectrum required for the sampling procedure
(see equation 1). However, according to the discussion in Erdoğdu
et al. (2004) and Kitaura et al. (2009) these effects can be greatly ac-
counted for in a separate post-processing step, once the continuous
expected galaxy density field in redshift space has been obtained.
For this reason, here we seek to recover the density field in redshift
space permitting us to test various bias models and redshift space
distortion correction methods in a subsequent step.

In particular, the relation between the true underlying dark matter
density field and the expected continuous galaxy density contrast is
generally very complicated and involves non-local and non-linear
bias operators. Several non-local bias models have been presented,
which mostly aim at correcting the large-scale power in power-
spectrum estimation procedures (see e.g. Peacock & Smith 2000;
Seljak 2000; Tegmark et al. 2004; Hamann et al. 2008). As described
in Sections 2 and 2.2, the Hamiltonian sampler is able to account
for such bias models. Note, however, that a specific bias model
also fixes the model for the underlying dark matter distribution.
Therefore, here, we prefer to follow the approach of previous works
of setting the bias operator to a constant linear factor equal to
unity (Erdoğdu et al. 2004; Kitaura et al. 2009). In this fashion,
one obtains the expected continuous galaxy density contrast. As
discussed in Kitaura et al. (2009), the according underlying dark
matter distribution can then be simply obtained by deconvolving
the results with a specific scale-dependent bias model, permitting
us to explore various different bias models.

In a similar manner, one can treat redshift-space distortion ef-
fects. These are mainly due to the peculiar velocities of galaxies,

which introduce Doppler effects in the redshift measurement (see
e.g. Davis & Peebles 1983; Kaiser 1987; Peacock & Dodds 1994;
Hamilton 1998). This effect leads to a radial smearing of the ob-
served density field in redshift space and yields elongated structures
along the line of sight, the so-called Finger-of-God effect.

Additionally, there exists a cosmological redshift-space effect
which is sensitive to the global geometry of the Universe. In par-
ticular, the comoving separation of a pair of galaxies at z � 0.1 is
not determined only by their observable angular and redshift sepa-
rations without specifying the geometry or equivalently the matter
content of the Universe (Magira, Jing & Suto 2000). This effect
yields anisotropies in the matter distribution especially at z ≥ 1 (see
e.g. Alcock & Paczyński 1979; Matsubara & Suto 1996; Ballinger,
Peacock & Heavens 1996; Popowski et al. 1998). However, for the
volume considered in this work (z ≤ 0.27), the dominant redshift-
space distortions are due to non-linear peculiar motions of galaxies
in large overdensities. This effect has pronounced consequences for
the power spectrum in redshift space, since it suppresses power on
small scales. As demonstrated in Erdoğdu et al. (2004), the redshift-
space power spectrum of a fully evolved non-linear matter distribu-
tion is very similar to a linear power spectrum at the scales relevant
for this work (k ≤ 2 h Mpc−1). Here, they used the non-linear
power-spectrum fitting formula provided by Smith et al. (2003).
However, the exact galaxy power spectrum in redshift space is not
known. The work of Tegmark et al. (2006) indicates that the recov-
ered power spectrum of the SDSS main sample is close to a linear
power spectrum, which may be due to the fact that this galaxy sam-
ple is not strongly clustered. In this case, the redshift-space power
spectrum would be even closer to a linear power spectrum. In any
case, assuming a linear power spectrum will still permit physically
accurate matter field inference in redshift space (Erdoğdu et al.
2004). For this reason, in the absence of more precise information
on the galaxy power spectrum in redshift space, here we will assume
a linear power spectrum, calculated according to the prescription
provided by Eisenstein & Hu (1998, 1999). One should also bear in
mind that the data themselves will govern the inference process. For
this reason, power spectra measured from the Hamiltonian samples
will only be defined partially by the a priori power-spectrum guess
and mostly by the data. However, we defer a more careful treatment
of all physical effects including a joint inference of density field
and power spectrum to a future work.

It is clear that precise correction of these redshift-space effects
requires knowledge about the peculiar velocities of all observed
galaxies, which is usually not provided by galaxy redshift surveys.
Therefore, precise correction of redshift-space distortions is very
complicated and subject to ongoing research. In the linear regime,
the theory behind the observed redshift-space distortions is well
developed (Kaiser 1987; Hamilton 1998). However, in quasi-linear
and non-linear regimes, we instead have to resort to making approx-
imations or using fitting formulae based on numerical simulations
(Percival & White 2009). The literature provides numerous ap-
proaches to alleviate these redshift-space distortions, particularly
in power-spectrum estimation. Most of these approaches aim at
restoring the correct power by deconvolution with a redshift-space
convolution kernel which takes into account the random pair ve-
locities of galaxies in collapsed objects (see e.g Peacock & Dodds
1994; Ballinger, Peacock & Heavens 1996; Hamilton 1998; Jing,
Mo & Boerner 1998; Kang et al. 2002; Erdoğdu et al. 2004; Jing
& Börner 2004; Scoccimarro 2004; Cabré & Gaztañaga 2009;
Percival & White 2009). Such techniques have been adopted to
correct Wiener density reconstructions by applying a redshift dis-
tortion operator to the final result, in order to restore the correct
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power (Erdoğdu et al. 2004; Kitaura et al. 2009). However, it must
be noted that this method does not account for the correction of
phase information and therefore only corrects the two-point statis-
tics of the recovered density field. Correcting also the phases of
the density field will rather need non-linear approaches than simple
deconvolution techniques.

Three-dimensional density inference hence requires redshift-
space distortion corrections which also account for phase infor-
mation and would be dependent on the density or gravitational
potential. In the linear regime, it is possible to apply an inverse
redshift-space operator which transforms the redshift-space den-
sity to its real-space counterpart (Nusser & Davis 1994; Taylor &
Valentine 1999; D’Mellow & Taylor 2000). However, it does not
account for the strongly non-linear regime which mostly generates
the Finger-of-God effect. For this reason, Tegmark et al. (2004)
proposed a Finger-of-God compression method. Here, they use a
standard friends-of-friends algorithm to identify a cluster by tak-
ing into account different density thresholds, which set the linking
length. They then measure the dispersion of galaxies about the clus-
ter centre along the line of sight and in the transverse direction. If
the radial dispersion exceeds the transverse dispersion, the cluster is
compressed radially until the radial dispersion equals the transverse
dispersion (Tegmark et al. 2004). However, it is not clear to what
degree such a method would falsely isotropize filaments or under
dense objects along the line of sight to spherical clusters. Such a
method of isotropizing the density field, however, can also be ap-
plied in a post-processing step, by noting that a density threshold
refers to a linking length in the friends-of-friends algorithm.

Nevertheless, the above correction methods mask the fact that
redshift-space distortions introduce statistical uncertainties. Thus,
unique recovery of the real-space density field is generally not pos-
sible. A full characterization of the joint uncertainties of the real-
space density hence would require to carefully take into account the
uncertainties introduced by redshift-space distortions or the lack of
knowledge on peculiar velocities. This can be achieved by intro-
ducing a density-dependent peculiar velocity sampling scheme to
our method, as proposed by Kitaura & Enßlin (2009). However, we
defer sampling of the peculiar velocities, and therefore correction
of redshift distortion effects, to a future work.

4 R ESULTS

In this section, we describe the results obtained from the large-scale
structure inference procedure.

4.1 Convergence test

HADES is a Markov chain Monte Carlo sampler and hence we have to
test if the individual Hamiltonian samples really represent the log-
normal Poissonian posterior. Convergence diagnostic of Markov
chains is the subject of many discussions in the literature (see
e.g. Heidelberger & Welch 1981; Gelman & Rubin 1992; Geweke
1992; Raftery & Lewis 1995; Cowles & Carlin 1996; Hanson 2001;
Dunkley et al. 2005). However, here we apply the widely used
Gelman & Rubin diagnostic, which is based on multiple simulated
chains by comparing the variances within each chain and the vari-
ance between chains (Gelman & Rubin 1992). In particular, we
calculate the potential scale reduction factor (PSRF; see Jasche &
Kitaura 2010). A large PSRF indicates that the interchain variance is
substantially greater than the intrachain variance, and longer chains
are required. Once the PSRF approaches unity, one can conclude
that each chain has reached the target distribution. We calculated the

Figure 1. Results of the Gelman & Rubin convergence diagnostic. The
PSRF indicates convergence. As can be seen, the Gelman & Rubin test
converges faster in regions with good data.

PSRF for each voxel in our calculation domain. The result for this
test is presented in Fig. 1. It indicates convergence of the Markov
chain. However, it can be seen that some regions of the domain con-
verge faster than others. This is due to the fact that not all regions
of the cubical volume have been observed equally. Regions which
contain good observations converge faster, since there the probabil-
ity distribution is narrower, while poorly or non-observed regions
converge slower, since the space of possible solutions is larger. Also,
note that the Gelman & Rubin diagnostic is generally a conserva-
tive test, and other tests might indicate convergence much earlier.
However, this test clearly demonstrates that the quality and amount
of observational data can have a strong impact on the convergence
behaviour of the chain.

4.2 Hamiltonian samples

Since the Markov chain converges, we can conclude that the in-
dividual samples are really samples from the large-scale structure
posterior. At this point, it is important to insist that the Hamiltonian
samples are not the result of a filtering procedure. A filter gener-
ally suppresses the signal in low-signal-to-noise ratio regions and
therefore produces biased estimates for the physical density field.
This is not the case for the individual Hamiltonian samples. Since
they are random realizations of the lognormal Poissonian poste-
rior, they are unbiased density fields in the sense that they possess
correct physical power throughout the entire cubical volume. As
an example, we present slices through an arbitrary density sample
in Fig. 2. Already visually, one has the impression that the den-
sity field has equal power throughout the entire domain, even in
the unobserved regions. This is because the Hamiltonian sampler
non-linearly augments the poorly or unobserved regions with sta-
tistically correct information. Each density sample therefore is a
proper physical density field, from which physical quantities can be
derived. To demonstrate this, we measure the power spectra of some
of these Hamiltonian samples. The result is presented in Fig. 3. As
can be seen, the power spectra of the individual samples are very
close to the assumed linear 	CDM power spectrum. The deviations
at large scales and small scales are due to the impact of the data.
At small scales the deviation can be explained by redshift-space
distortions, while at the largest scales cosmic variance is dominant.
There is clearly no sign of artificial power loss due to the survey
geometry. Another important issue to repeat at this point is that the
aim of the Hamiltonian sampler is not to provide a single unique
reconstruction of the underlying density field but rather to explore
the space of possible full three-dimensional density fields, which
are compatible with the observation. A unique reconstruction of
the three-dimensional density field is generally impossible, partic-
ularly due to the statistical uncertainties in the observations. For

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 409, 355–370



Bayesian non-linear LSS inference of the SDSS DR 7 361

Figure 2. Three different slices from different sides through density fields. The left-hand panels show slices through one of the 40 000 density samples, middle
panels depict the estimated ensemble mean and right-hand panels demonstrate the according slices through the three-dimensional response operator Ri. It can
be seen that the density sample (left-hand panels) possesses equal power throughout the entire domain, even in the unobserved regions.

this reason, the Hamiltonian sampler provides us with a sampled
representation of the cosmic density posterior distribution, which
contains all the information on the three-dimensional density field,
which can be extracted from the data and at the same time quanti-
fies its uncertainties. Each individual Hamiltonian sample therefore
represents a possible three-dimensional large-scale structure con-
figuration, which is compatible with the observation. Once we have
obtained this set of Hamiltonian samples, we can easily calculate
statistical summaries such as the ensemble mean, of which we show

some slices in the middle panels of Fig. 2. It can be seen that the en-
semble mean nicely reflects the filamentary structure of the cosmic
web. Further, in the unobserved regions the density fluctuations of
the individual samples add up to cosmic mean density on average.
This is of course an expected result since on average, we would
expect mean density to be found in unobserved regions in the sky.
Also note that in poorly observed regions, where the sampling of the
density field by galaxies is bad due to selection effects, the statistical
uncertainties are also high, allowing the individual density samples
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Figure 3. Power spectra of some Hamiltonian samples. The black curve
corresponds to a linear 	CDM power spectrum.

to deviate largely from the ensemble mean density field. This can
be particularly observed in regions which are far away from the
observer, where only small numbers of galaxies are observed. On
the other hand, in regions with very good observations, the individ-
ual density samples only fluctuate little around the ensemble mean,
reflecting the smaller uncertainty in these regions due to a larger
signal-to-noise ratio. In this fashion, each individual density sample
represents a random realization of the lognormal Poissonian poste-
rior. Also note that since the individual samples are valid density
field realizations, it is easy to derive meaningful physical quantities,
such as the gravitational potential, cosmic flows or the tidal shear
tensor as demonstrated in the remainder of this paper.

4.3 Ensemble mean and variance

Here we want to present the ensemble mean and variance for the set
of 40 000 Hamiltonian samples, each consisting of 2563 voxels. For
comparison with a single density sample the middle panels of Fig. 2
show the according slices through the ensemble mean density field,
which exhibits many interesting features. First, it renders remark-
ably well the filamentary structure of our cosmic neighbourhood.
Many clusters, filaments and voids can clearly be seen by visual
inspection. In the unobserved regions, the ensemble mean density
amplitudes drop to the cosmic mean for the density contrast δ = 0,
just as required by construction. Structures close to the observer, at
Cartesian coordinates (0, 0, 0), are more clearly visible than struc-
tures at larger distances. Especially, filaments and voids are less
prominent at larger distances. This is due to the observational re-
sponse operator Ri, which due to the radial selection function drops
to very low values at large distances. Therefore, once a galaxy is
detected far away from the observer, it must reside inside a large
overdensity and hence inside a cluster. This expectation is clearly
represented by the ensemble mean density field. Another interest-
ing point to remark is that the borders to the unobserved regions are
not very sharp. Some of the observed information is non-linearly
propagated into the unobserved regions, since our method takes
into account the correlation structure of the underlying signal. It

can therefore be seen that some clusters and voids are interpolated
further out into the unobserved regions. In comparison to the Wiener
filter as previously applied to SDSS data by Kitaura et al. (2009), it
seems that the Hamiltonian sampler is more conservative and less
optimistic for the extrapolation of information into the unobserved
region. This may be due to the fact that here we take into account
the full Poissonian noise statistics rather than restricting the noise
to a Gaussian approximation. Beside the ensemble mean, here we
also calculate the ensemble variance per voxel, which is the diag-
onal of the full ensemble covariance matrix. Some slices through
the ensemble mean, ensemble variance and the according slices
through the observational response operator are presented in Fig. 4.
Here the middle panels correspond to ensemble variance. At first
glance, one can nicely see the Poissonian nature of the galaxy shot
noise. High density peaks in the ensemble mean map correspond
to high variance regions in the ensemble variance map, as expected
for Poissonian noise. One can clearly see that the Hamiltonian sam-
pler took into account the full three-dimensional noise structure of
the galaxy distribution. Additionally, with a larger distance to the
observer, the average variance increases, as is expected due to the
radial selection function. It is also interesting to remark that some
voids have been detected with quite low variance, hence with high
confidence. Note, however, that although here we only plotted the
diagonal of the density covariance matrix, the full non-diagonal co-
variance structure is completely encoded in the set of Hamiltonian
samples and can be taken into account for future analysis. Also, note
that the variance slices show high variances in regions where many
galaxies have been observed. This is a key feature of the Poisson
statistics, because the standard deviation is equal to the square root
of the number of individual galaxies. That is, if there are N galaxies
in each voxel, the mean is equal to N and the standard deviation
is equal to

√
N . This makes the signal-to-noise ratio equal to

√
N

for such a homogeneous case. To emphasize the fact that regions
which show high variances have also high signal-to-noise ratios, we
calculate the density-to-variance ratio:

ωi = (1 + 〈δi〉)√〈
δ2
i

〉
− 〈δi〉2

. (13)

The result of this calculation is presented in Fig. 5 for the case of the
lower slices of Fig. 4. It clearly indicates high signal-to-noise ratios
in high density regions. In addition, we also estimate the cumulative
probabilitiesP (δi ≤ δth) at 20 different density threshold values δth,
for the density found at each voxel. These cumulative probabilities
are estimated from the Hamiltonian samples by

P (δi ≤ δth) =
∑Nsamp

n=1 �(δth − δi)

Nsamp
, (14)

where n labels the individual Hamiltonian samples, Nsamp is the
total number of samples and �(x) is the Heaviside function. These
cumulative probabilities allow, for example, to estimate the median
density at each voxel and can be useful when analysing galaxies
in their cosmic environment as will be done in a following project.
Some such cumulative probability distributions, chosen randomly,
are shown in Fig. 6. As can be seen, the recovered density amplitudes
extend over a large range, from small linear to very high non-linear
values.

5 W EB CLASSIFICATION

In Section 1, we have already mentioned that the results presented
in Section 4 are to be used for analysing galaxy properties in the
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Figure 4. Three different slices from different sides through ensemble mean density (left-hand panels), ensemble variance (middle panels) and the three-
dimensional response operator Ri (right-hand panels). Especially the variance plots demonstrate that the method accounted for the full Poissonian noise
structure introduced by the galaxy sample. One can also see the correlation between high density regions and high variance regions, as expected for Poissonian
noise.

large-scale environment in a future work. Such analyses also require
the classification of the large-scale density field into different web-
type objects. Therefore, in order to characterize the environment
of our SDSS galaxy population, here we apply the dynamic web
classification procedure, as described in Section 2.3, to the set of
Hamiltonian samples. A similar analysis has been previously carried
out by Lee & Erdogdu (2007) and Lee & Lee (2008) based on a
Wiener mean density reconstruction of the Two-Micron All-Sky

Survey (2MASS) redshift survey to study alignments of galaxy
spins with the tidal field and the variation of a galaxy morphological
type with environmental shear.

Here we will follow a similar procedure to classify each individ-
ual voxel of a given Hamiltonian sample into one of the four web
types Ti, these types being T1 = void, T2 = sheet, T3 = filament,
T4 = halo. To do so, we perform the following three steps for an
individual Hamiltonian sample.
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Figure 5. The plot shows the relative density to variance ratio ωi . In com-
parison to the lower panels of Fig. 4, it indicates a high signal-to-noise ratio
in regions of high density as expected for Poissonian noise.

Figure 6. Cumulative probability distributions of the density at randomly
chosen points in the volume. The cumulative probability distributions have
been evaluated for 20 threshold values δth. The two horizontal lines indicate
the P (δ ≤ δth) = 0.5 and 0.9 thresholds, respectively.

(i) Solve equation (6) for the deformation tensor Tij by means of
fast Fourier transform techniques.

(ii) Solve the cubic characteristic equation for the three eigenval-
ues of the deformation tensor at each spatial position.

(iii) Apply the rules given in Table 1 to classify the web type at
each spatial position for a given threshold value λth.

The result of this procedure for the nth sample is then a unit 4-vector
T n(xk) at each voxel position xk. All of the entries of this 4-vector
are zero except for one, which indicates the web type.

However, at this point it should be noted that the density fields
have been obtained in redshift space, and hence particularly redshift-
space distortions might change the morphological structure of the
real-space density field especially in high density regions. Never-
theless, in the absence of a clear gauging of the threshold variable
λth there still exists a degree of arbitrariness which may be more
important for the clear definition of structure types. A thorough
investigation of the impact of redshift-space distortion effects and

their correction will be deferred to a future work. In the following,
we will use the web-type classification as an example of simple
non-linear and non-Gaussian error propagation.

Applying the method, as outlined above, to all Hamiltonian sam-
ples will yield a set of classification 4-vectors, which encodes the
information and uncertainty of the observations. Additionally, as an
intermediate result, we obtain the set of the three eigenvalues for
each individual Hamiltonian sample. Slices through their ensemble
mean estimates are presented in Fig. 7.

However, rather than summarizing the results in terms of mean
and variance here we want to estimate the full cosmic web posterior.
This is achieved by counting the relative frequencies for each web
type at each individual spatial coordinate within the set of Hamil-
tonian samples. With these definitions, we yield the cosmic web
posterior for each web type as

P
(
Ti(xk)|

{
N

g
k

}
, λth

)
=

∑Nsamp
n=1

∑4
j=1 δK

Ti (xk ) T n
j (xk )

Nsamp
, (15)

where n labels the individual Hamiltonian samples, Nsamp is the total
number of samples and δK

ij is the Kronecker delta. The cosmic web
posterior incorporates all observational information and uncertain-
ties and enables us to determine how well different structures can
be classified with respect to observational uncertainties.

We evaluate the cosmic web posterior for four different values
of λth, with λth = 0.0, 0.2, 0.4, 1.0. Slices through the cosmic
web posteriors for the four different cases are presented in Fig. 8.
It can be clearly seen that the properties of the survey geometry
are represented by the four posterior distributions. While the web
classification in the observed regions clearly follows the structure
of the underlying density field, it obviously cannot provide a clear
classification of unobserved regions. Also with increasing distance
to the observer, the web classification becomes more and more
uncertain. In this fashion, the cosmic web posterior renders the
uncertainties introduced by the radial selection function and the
resulting higher shot noise contribution at larger distances. The
impact of the λth threshold can be observed when comparing the
four cosmic web posteriors. In the case of λth = 0.0 the cosmic web
consists of many small isolated voids, which occupy only a small
fraction of the total area of the slice. With increasing threshold
λth, voids become bigger and more connected until they completely
dominate the cosmic web for the case λth = 1.0. The opposite
behaviour can be observed in the case of the halo posteriors, as the
number of clearly detected haloes declines with increasing threshold
λth. Following Forero-Romero et al. (2009), we also calculate the
volume occupied by each web type [volume filling fraction (VFF)]
and the fraction of mass contained in such a volume [mass filling
fraction (MFF)]. The results are presented in Fig. 9 and show the
same behaviour as described in Forero-Romero et al. (2009). Fig. 9
supports the visual impression, gained by inspection of Fig. 8, that
especially the VFF and MFF for voids strongly depend on the
threshold value λth. This shows that voids can serve as a sensitive
monitor and an indicator of the cosmic web (Forero-Romero et al.
2009). Unfortunately, Forero-Romero et al. (2009) do not provide an
explicit gauging of the λth values from simulations. Such a gauging
and hence a clear definition of the different cosmic web types would
be very valuable for these types of analysis.

Having now a representation of the web-type posterior, we can
for example calculate the odds Oi(xk) ratio given as

Oi(xk) =
P

(
Ti(xk)|

{
N

g
k

}
, λth

)
1 − P

(
Ti(xk)|

{
N

g
k

}
, λth

) 1 − P (Ti(xk))

P (Ti(xk))
, (16)
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Figure 7. Ensemble mean of the eigenvalues of the deformation tensor.

which tells us how much a specific web type is favoured over all
others. Here, the P (Ti(xk)) can be obtained by averaging over all
voxels in the volume. For example, this permits us to build a simple
structure-type map m(xk) which can be used for visual analyses as
presented in the next section. Such a map can be defined as

m(xk) =
{

Ti(xk) for Oi(xk) ≥ Oth

undecided else
, (17)

where Oth is an odds threshold usually chosen larger than unity.

6 G ALAXY PROPERTIES VERSUS
LARGE-SCALE STRUCTURE

In this section, we present a preliminary, but intuitive examination
of the correlations between the large-scale environment of galaxies
and their physical properties. Here we consider two properties of
galaxies: stellar mass M� and g − r colour, and study how these
are correlated with the overdensity δ of the large-scale environment
and its type, which is one of the four web types classified as halo,
filament, sheet and void. We will come back to this topic in a
separate paper by considering more physical properties of galaxies
and performing more careful and quantitative analyses.

Our results are shown in Figs 10 and 11 where we plot the
galaxies in our sample with different stellar masses and g − r
colours, on top of a slice through the ensemble mean density field.
In each figure, the four panels correspond to four M� intervals as
indicated. The galaxies falling into a given M� range are plotted in
the corresponding panel, with red (blue) galaxies being shown as red
(blue) dots. Here we classify each galaxy into red or blue population
using its g − r colour and the luminosity-dependent divider as
described in Li et al. (2006) (see their equation 7 and table 4). The
observer on Earth is at the bottom right-hand corner of the slice
where x = 0 and y = 0 Mpc. The density field with z = 302.16 ±
4.5 Mpc is projected on to the x−y plane and is repeated in every
panel. In Fig. 10 the background density field is coded by the
mean overdensity, ln(2 + 〈δi〉), averaged for each pixel over the
z range probed and the 40 000 Hamiltonian samples. In Fig. 11,
we present a structure-type map as defined in equation (17) by
choosing an odds threshold of Oth = 1.55 and λth = 1.0. Each pixel
of this map is colour-coded by the web type which is determined
by our classification algorithm described above, with types of halo,
filament, sheet and void being plotted in black, light grey, dark grey
and white, respectively.

Qualitatively, the galaxies plotted in these figures appear to
closely trace the underlying large-scale structure. This is not sur-
prising because, by construction, the latter is reconstructed from the
former. However, careful comparison of the different panels reveals
a number of interesting trends. First, there exists a clear correlation
between the galaxy mass and the large-scale environment, regard-
less of how the environment is quantified. More massive galaxies
tend to reside in regions with higher densities and more halo-like
structures. At the highest masses, almost all galaxies are confined
within regions of high densities or those of halo and filament types.
As M� decreases, more and more galaxies are found in void-like re-
gions. Secondly, at fixed stellar mass, the galaxy colour also appears
to be correlated with the large-scale environment. Red galaxies trace
the density field more closely than blue galaxies. At all masses, the
distribution of blue galaxies is more extended across the different
types of structures. At low masses, the blue population dominates
the galaxies in void-like environment.

These trends are consistent with recent similar studies by Lee
& Lee (2008) and Lee & Li (2008), which were based on much
shallower galaxy samples (thus smaller volume), and also with the
clustering analyses of Li et al. (2006). More work is needed in
order to have more quantitative characterization of the relation-
ships between galaxy properties and the large-scale environment,
and thus more powerful constraints on galaxy formation models.
These results, in turn, can be fed back to the large-scale structure
inference and help to improve our cosmographical description of
the Universe.

7 SU M M A RY A N D C O N C L U S I O N

In this work, we present the first application of the non-linear, non-
Gaussian Bayesian large-scale structure inference algorithm HADES

to SDSS DR7 data.
HADES is a numerically efficient implementation of a Hamiltonian

Markov chain sampler, which performs sampling in extremely high
parameter spaces usually consisting of ∼107 or more free parame-
ters. In particular, HADES explores the lognormal Poissonian density
posterior, which permits precision recovery of poorly sampled ob-
jects and density field inference deep into the non-linear regime
(Jasche et al. 2010).

The large-scale structure inference was conducted on a cubic
equidistant grid with a side length of 750 Mpc consisting of 2563

voxels, yielding a grid resolution of about 3 Mpc. The large-scale
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Figure 8. Slices through the cosmic web posterior for the threshold values λth = 0.0, 0.2, 0.4, 1.0 (from top to bottom) for the four different web types. It is
interesting to note that sliced sheets look filamentary, while filaments piercing the slice appear as dots.

structure inference procedure correctly accounts for the survey ge-
ometry, completeness and radial selection effects as well as for the
correct treatment of Poissonian noise. The analysis yielded about
3TB of valuable scientific information in the form of full three-
dimensional density samples of the lognormal Poissonian density
posterior. This set of density samples is thus a sampled represen-
tation of the full non-Gaussian density posterior distribution and
therefore encodes all observational systematics and statistical un-
certainties. Hence, all uncertainties and systematics can seamlessly
be propagated to any finally inferred quantity, by simply apply-
ing the according inference procedure to the set of samples. In
this fashion, the results permit us to make precise and quantita-
tive statements about the large-scale density field and any derived
quantity.

We stress that our Hamiltonian samples are not the result of a
filtering procedure. A filter generally suppresses the power of the
signal in low signal-to-noise ratio regions and therefore does not
yield a physical meaningful density, since it lacks power in poorly
or unobserved regions. However, each Hamiltonian density sample
represents a complete physical matter field realization conditional
on the observations, in the sense that it possesses correct physical
power throughout the entire volume. Visual inspection of these
density samples has already shown a homogeneous distribution of
power throughout the entire volume. This fact was emphasized by
the demonstration of power spectra measured from these density
samples, which show no sign of being affected by lack of power
or artificial mode coupling nor do they show any sign of being
affected by an adaptive smoothing kernel as would be expected for
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Figure 9. VFF and MFF as a function of λth. Continuous lines denote voids, dashed lines sheets, dotted lines filaments and dot–dashed lines
haloes. Especially the void VFF and MFF respond strongly to a change in λth making them a sensitive measure of the cosmic web (Forero-Romero
et al. 2009).

filter applications. It should be noted that this fact marks the crucial
difference of our method to previous filter-based density estimation
procedures.

In Section 4.3, we estimated the ensemble mean and the according
variance from the 40 000 density samples. The estimated ensemble
mean nicely depicts the cosmic web consisting of filaments, voids
and clusters extracted from the SDSS data. It is clear that the en-
semble mean represents the mean estimated from the lognormal
Poissonian posterior conditional on the SDSS data. Therefore, it
encodes the observational uncertainties and systematics. This can
be seen by the fact that the ensemble mean approaches cosmic
mean density in poorly or unobserved regions. Further, we plotted
the according variance, which demonstrates that the non-Gaussian
behaviour and structure of the Poissonian shot noise were correctly
taken into account in our analysis. Especially, the expected corre-
lation between high mean density and high variance regions was
clearly visible. We also estimated the cumulative probabilities for
the density amplitude at each volume element and demonstrated
that the recovered density fields truly cover the broad range from
linear to non-linear density amplitudes.

To not only characterize the environment of our galaxy sample,
but also to demonstrate the advantages of the Hamiltonian sam-
ples, we performed an example cosmic web-type classification in
Section 5. In particular, we followed the dynamical cosmic web
classification approach of Hahn et al. (2007) with the extensions
proposed by Forero-Romero et al. (2009). This procedure involves
the calculation of the cosmic deformation tensor and its eigenvalues.
We demonstrated that this procedure can easily be applied to the set
of samples, since they represent full physical matter field realiza-
tions. As a byproduct of this procedure, we estimated the ensemble
mean for the three eigenvalues of the cosmic deformation tensor.
Further, we classified the individual volume elements into one of
the four different web types: void, sheet, filament and halo. The
classification into four discrete web types enabled us to explicitly
estimate the cosmic web posterior, which provides the probability
of finding a specific web type at a given point in the volume condi-
tional on the SDSS data. This result is especially appealing from a

Bayesian point of view, since it emphasizes the fact that the result
of a Bayesian method is a complete probability distribution rather
than just a single estimate. Here we saw that especially voids are
a sensitive measure for the cosmic web. Of course, it is possible
to repeat the cosmic web classification in a similar manner to any
other classification procedure.

In Section 6, we presented a preliminary examination of the
correlation between the large-scale environment and physical prop-
erties of galaxies. In particular, we considered the stellar mass and
g − r colour of galaxies in relation to the density contrast δ. A
qualitative analysis revealed that there exists correlation between
these galaxy properties and the large-scale structure. In particular,
massive galaxies are more likely to be found in massive structures,
while low-mass galaxies reside in void-like structures. The plots
also demonstrate the different clustering behaviour of red and blue
galaxies. Also, note that these observed trends are consistent with
previous works (Lee & Lee 2008; Lee & Li 2008; Li et al. 2006).
However, more work is required in order to provide quantitative
statements. This will be done in a forthcoming publication.

The results presented in this work will be valuable for many sub-
sequent scientific analyses of the dependence of galaxy properties
on their cosmic environment. In doing so, particularly the Hamil-
tonian samples allow for a more intuitive handling of observational
data, since they can be understood as full matter field realizations
or different multiverses consistent with our data of the Universe
we live in. Besides providing quantitative characterizations of the
large-scale structure, the results also give us an intuitive under-
standing of the three-dimensional matter distribution in our cosmic
neighbourhood. We intend to make our data publically available to
the community.

Future applications will also take into account non-linear bias
models and peculiar velocity sampling procedures, to provide
even more accurate density analyses and to accurately account for
redshift-space distortions.

We hope that this work demonstrates the potential of Bayesian
large-scale structure inference and its contribution to current and
future precision analyses of our Universe.
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Figure 10. SDSS galaxies overplotted on the ensemble mean density field. The blue and red dots denote blue and red galaxies, respectively, and the different
panels depict galaxies in different stellar mass M� bins.
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Figure 11. Same as Fig. 10, but here the galaxies are overplotted on a structure-type map as defined in Section 5. The colour coding denotes the web type:
halo (black), filament (light grey), sheet (dark grey) and void (white). Regions, which are marked as undecided according to our criteria, equation (17) with
Oth = 1.55, are coloured yellow.
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Cabré A., Gaztañaga E., 2009, MNRAS, 396, 1119
Choi Y., Park C., Vogeley M. S., 2007, ApJ, 658, 884
Colberg J. M., Sheth R. K., Diaferio A., Gao L., Yoshida N., 2005, MNRAS,

360, 216
Colberg J. M. et al., 2008, MNRAS, 387, 933
Coles P., Jones B., 1991, MNRAS, 248, 1
Cowles M. K., Carlin B. P., 1996, J. American Statistical Association, 91,

883
Davis M., Peebles P. J. E., 1983, ApJ, 267, 465
D’Mellow K. J., Taylor A. N., 2000, in Courteau S., Willick J., eds, ASP

Conf. Ser. Vol. 201, Cosmic Flows Workshop. Astron. Soc. Pac., San
Francisco, p. 298

Dressler A., 1980, ApJ, 236, 351

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 409, 355–370



370 J. Jasche et al.

Duane S., Kennedy A. D., Pendleton B. J., Roweth D., 1987, Phys. Lett. B,
195, 216

Dunkley J., Bucher M., Ferreira P. G., Moodley K., Skordis C., 2005,
MNRAS, 356, 925

Ebeling H., Wiedenmann G., 1993, Phys. Rev. E, 47, 704
Eisenstein D. J., Hu W., 1998, ApJ, 496, 605
Eisenstein D. J., Hu W., 1999, ApJ, 511, 5
Enßlin T. A., Frommert M., Kitaura F. S., 2009, Phys. Rev. D, 80, 5005
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2009, MNRAS, 397, 2070
Matsubara T., Suto Y., 1996, ApJ, 470, L1
Neal R. M., 1993, Technical Report CRG-TR-93-1, Univ. Toronto
Neal R. M., 1996, Lecture Notes in Statistics, Bayesian Learning for Neural

Networks, 1st edn. Springer, Berlin
Novikov D., Colombi S., Doré O., 2006, MNRAS, 366, 1201
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